一、学习目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系;
3.使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高;
4.使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算;
5.使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题;
6.使学生理解比例的意义和基本性质,能正确判断两个比是否能组成比例;
7.通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
二、学习难点:
1.负数的意义;
2.圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式;
3.圆柱、圆锥体积的计算公式的推导;
4.比例的意义和基本性质;
5.应用比的基本性质判段两个数能否成比例,并正确的组成比例。
三、知识点归纳总结:
1.负数:负数是数学术语,指小于0的实数,如-3.
任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记,如-2,-5.33,-45,-0.6等。
2.正数:大于0的数叫正数(不包括0)
若一个数大于零(>0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。
3.正数的几何意义:数轴上0右边的数叫做正数
4.数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方向。
6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。如下图所示:
即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h;如S为底面积,高为h,体积为V:V=Sh
8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch(注:c为πd)
圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴。如下图所示:
11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh
S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径
-
小学六年级数学思维训练精选(上)第九讲 二进制小数 习题解答
解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通"已知"与"未知"的联系,抓住问题的本质,迅速解题。
- 小学六年级数学思维训练精选(上)第十讲 棋盘中的数学(一)
- 小学六年级数学思维训练精选(上)第十讲 棋盘中的数学(一)习题
- 小学六年级数学思维训练精选(上)第十讲 棋盘中的数学(一)习题解答
- 小学六年级数学思维训练精选(上)第十一讲 棋盘中的数学(二)