小学数学思维训练数论问题知识总结:约数和倍数

 来源:奥数网    要点:奥数数论问题  
编辑点评: 奥数数论问题一向是师生家长非常关注的一类问题,要做好奥数数论题需要学生多思考多做练习。小编在这里为大家收集了一些相关的学习资料,大家来学一学吧。

“奥数”是奥林匹克数学竞赛的简称。学习奥数可以锻炼思维,是大有好处的。

约数和倍数

约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:

1、几个数都除以它们的最大公约数,所得的几个商是互质数。

2、几个数的最大公约数都是这几个数的约数。

3、几个数的公约数,都是这几个数的最大公约数的约数。

4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:

12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:

12的倍数有:12、24、36、48……;18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:

1、短除法求最小公倍数;

2、分解质因数的方法

点击查看小学奥数数论问题资料汇总>>>

最新2020奥数数论问题信息由沪江小学资源网提供。

请输入错误的描述和修改建议,建议采纳后可获得50沪元。

错误的描述:

修改的建议: