五年级数学思维训练知识点整理(上册):行程问题【上海小升初数学思维训练必读】

所属专题:小学数学思维训练资料库  来源:沪江小学资源网    要点:五年级奥数知识点  
编辑点评: 奥数可以锻炼大脑,对孩子的逻辑思维有很大的帮助。这里小编搜集了一系列的奥数练习题,以供大家练习巩固。

这一讲中,我们将要研究的是行程问题中一些综合性较强的题目。

为此,我们需要先回顾一下已学过的基本数量关系: 

路程=速度×时间;
总路程=速度和×时间;
路程差=速度差×追及时间

例1 小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?

分析:这道题实际上是一个行程问题.开始时两针成一直线,最后两针第一次重合.因此,在我们所考察的这段时间内,两针的路程差为30分格,又因为时针每小时走5分格,即它的速度是1/12分格/分钟,而分针的速度为1分格/分钟。所以,当它们第一次重合时,一定是分针从后面追上时针.这是一个追及问题,追及时间就是小明的解题时间。

解:30÷(1-1/12)=30÷11/12=32又8/11(分钟)

例2 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。  

画图如下:

分析: 结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。

又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。

解:①甲和丙15分钟的相遇路程: (40+60)×15=1500(米)。
②乙和丙的速度差: 50-40=10(米/分钟)。
③甲和乙的相遇时间: 1500÷10=150(分钟)。
④A、B两地间的距离:(50+60)×150=16500(米)=16.5千米。
答:A、B两地间的距离是16.5千米.

例3 甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?  

先画图如下:

分析: 结合上图,我们可以把上述运动分为两个阶段来考察:

①第一阶段——从出发到二人相遇:小强走的路程=一个甲、乙距离+100米,小明走的路程=一个甲、乙距离-100米。
②第二阶段——从他们相遇到小强追上小明,小强走的路程=2个甲、乙距离-100米+300米=2个甲、乙距离+200米,小明走的路程=100+300=400(米)。
从小强在两个阶段所走的路程可以看出:小强在第二阶段所走的路是第一阶段的2倍,所以,小明第二阶段所走的路也是第一阶段的2倍,即第一阶段应走400÷2=200(米),从而可求出甲、乙之间的距离为200+100=300(米)。解略。

例4 甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
分析: 在相同的时间内,乙行了(200-20)=180(米),丙行了200-25=175(米),则丙的速度是乙的速度的175÷180=35/36,
那么,在乙走20米的时间内,丙只能走20×35/36(米),因此,当乙到达终点时,丙离终点还有25-20×35/36=5又5/9米

例5 甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。  

先画图如下:

分析: 若设甲、乙二人相遇地点为C,甲追及乙的地点为D,则由题意可知甲从A到C用6分钟.而从A到D则用26分钟,因此,甲走C到D之间的路程时,所用时间应为(26-6)=20(分)。

同时,由上图可知,C、D间的路程等于BC加BD.即等于乙在6分钟内所走的路程与在26分钟内所走的路程之和,为50×(26+6)=1600(米).所以,甲的速度为1600÷20=80(米/分),由此可求出A、B间的距离。

解:50×(26+6)÷(26-6)=50×32÷20=80(米/分) (80+50)×6=130×6=780(米)
答:A、B间的距离为780米。

例6 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?

分析: 要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?

解:由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:

间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。

综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)

所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

例7 甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?

分析 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:

①求出火车速度V车与甲、乙二人速度V人的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:故l=(V车-V人)×8;(1)
(ii)火车开过乙身边用7秒钟,这个过程为相遇问题:故l=(V车+V人)×7.(2)
由(1)、(2)可得:8(V车-V人)=7(V车+V人),所以,V车=l5V人。
②火车头遇到甲处与火车头遇到乙处之间的距离是:(8+5×6O)×(V车+V人)=308×16V人=4928V人。
③求火车头遇到乙时甲、乙二人之间的距离。
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:4928V人-2(8+5×60)V人=4312V人。
④求甲、乙二人过几分钟相遇?4312V人÷2V人=2156(秒)=35又28/30分钟

 做习题>>>>

>>点击查看小学数学思维训练资料库专题,阅读更多相关文章!

最新2019五年级奥数知识点信息由沪江小学资源网提供。

请输入错误的描述和修改建议,建议采纳后可获得50沪元。

错误的描述:

修改的建议: